Symmetry breaking and Landau quantization in topological crystalline insulators
نویسندگان
چکیده
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. In the recently discovered topological crystalline insulators SnTe and Pb 1−x Sn x (Te, Se), crystal symmetry and electronic topology intertwine to create topological surface states with many interesting features including Lifshitz transition, Van-Hove singularity, and fermion mass generation. These surface states are protected by mirror symmetry with respect to the (110) plane. In this work we present a comprehensive study of the effects of different mirror-symmetry-breaking perturbations on the (001) surface band structure. Pristine (001) surface states have four branches of Dirac fermions at low energy. We show that ferroelectric-type structural distortion generates a mass and gaps out some or all of these Dirac points, while strain shifts Dirac points in the Brillouin zone. An in-plane magnetic field leaves the surface state gapless, but introduces asymmetry between Dirac points. Finally, an out-of-plane magnetic field leads to discrete Landau levels. We show that the Landau level spectrum has an unusual pattern of degeneracy and interesting features due to the unique underlying band structure. This suggests that Landau level spectroscopy can detect and distinguish between different mechanisms of symmetry breaking in topological crystalline insulators.
منابع مشابه
Two- and three-dimensional topological insulators with isotropic and parity-breaking Landau levels
We investigate topological insulating states in both two and three dimensions with the harmonic potential and strong spin-orbit couplings breaking the inversion symmetry. Landau-level-like quantization appear with the full twoand three-dimensional rotational symmetry and time-reversal symmetry. Inside each band, states are labeled by their angular momenta over which energy dispersions are stron...
متن کاملTopological crystalline insulators in the SnTe material class.
Topological crystalline insulators are new states of matter in which the topological nature of electronic structures arises from crystal symmetries. Here we predict the first material realization of topological crystalline insulator in the semiconductor SnTe by identifying its non-zero topological index. We predict that as a manifestation of this non-trivial topology, SnTe has metallic surface ...
متن کاملTopological Insulators a.k.a Quantum Spin Hall E ect
The recent experimental realization of a the quantum spin hall e ect has caused a lot of interest in these topological states of matter. Topological insulators are a new form of condensed matter that are not characterized by a spontaneously broken symmetry. Instead the materials are characterized by topology of the manifold of the occupied bloch states. Topological insulators have the unique pr...
متن کاملTopological crystalline insulators.
The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal sur...
متن کاملDirac mass generation from crystal symmetry breaking on the surfaces of topological crystalline insulators.
The tunability of topological surface states and controllable opening of the Dirac gap are of fundamental and practical interest in the field of topological materials. In the newly discovered topological crystalline insulators (TCIs), theory predicts that the Dirac node is protected by a crystalline symmetry and that the surface state electrons can acquire a mass if this symmetry is broken. Rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014